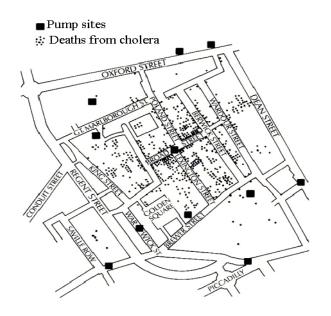
Gap Analysis for Spatial and Spatio-temporal Data Mining

Shashi Shekhar

McKnight Distinguished University Professor
Faculty of Computer Sc. and Eng., University of Minnesota
www.cs.umn.edu/~shekhar

Presented at

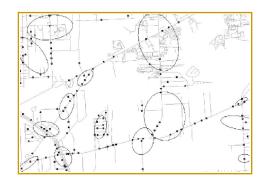

NSF Workshop on GeoSpatial and GeoTemporal Informatics

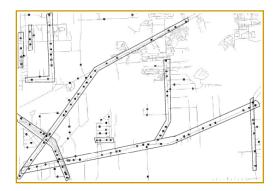
January 8th-9th, 2009

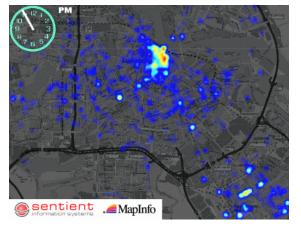
Washington D.C.

Spatial and Spatio-temporal Data Mining

- What is it?
 - Identifying interesting, useful, non-trivial pattern
 - ➤ Hot-spots, discontinuities, co-locations, trends, ...
 - in large spatial or spatio-temporal datasets
 - > Satellite imagery, geo-referenced data, e.g. census
 - gps-tracks, geo-sensor network, ...

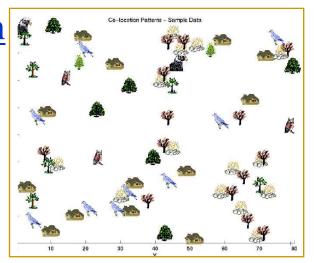


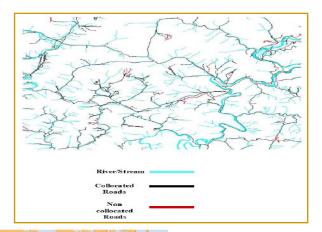

- Why is it important?
 - Potential of discoveries and insights to improve human lives
 - Environment: How is Earth system changing? Consequences for humans?
 - Public safety: Where are hotspots of crime? Why?
 - > Public health: Where are cancer clusters? Environmental reasons?
 - > Transportation, National Security, ...
 - However, (d/dt) (Spatial Data Volume) >> (d/dt) (Number of Human Analysts)
 - Need automated methods to mine patterns from spatial data
 - Need tools to amplify human capabilities to analyze spatial data



HotSpots

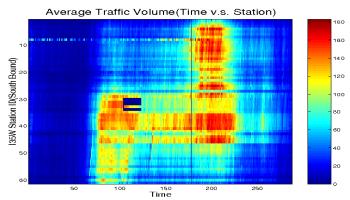
- What is it?
 - Unusally high spatial concentration of a phenomena
 - Cancer clusters, crime hotspots
- Solved
 - Spatial statistics based ellipsoids
- Almost solved
 - Transportation network based hotspots
- Failed
 - Classical clustering methods, e.g. K-means
- Missing
 - Spatio-temporal
- Next
 - Emerging hot-spots

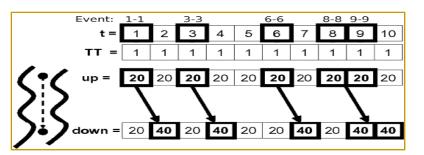


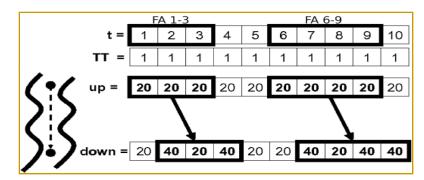


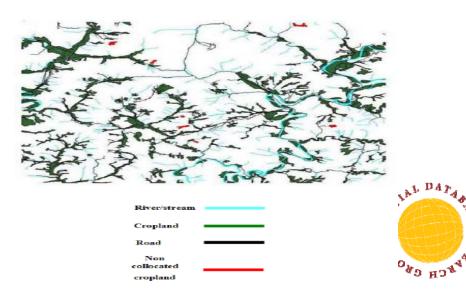
Colocation, Co-occurrence, Association

- What is it?
 - Subset of event types, whose instances occur together
 - Ex. Predator-prey species, (bar, misdemeanors)
- Solved
 - Colocation of point event-types
- Almost solved
 - Co-location of extended (e.g.linear) objects
- Failed
 - Neighbor-unaware Transaction based approaches
- Missing
 - Consideration of flow, motion, evolution
- Next
 - Tele-connection
 - Object-types that move / evolve together

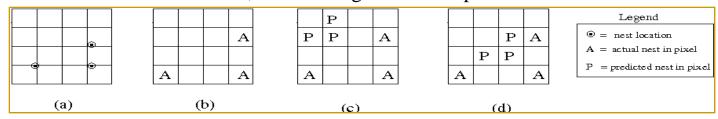


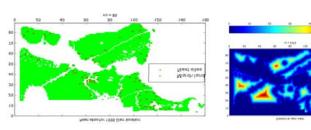


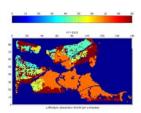


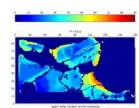

Spatial/Spatio-temporal Outliers, Anamolies

- What is it?
 - Location different from their neighbors
 - Discontinuities, flow anomalies
- Solved
 - Transient spatial outliers
- Almost solved
 - Anomalous trajectories
- Failed
- Missing
 - Persistent anomalies
 - Multiple object types, Scale
- Next
 - Dominant Persistent Anomalies








Space/Time Prediction

- What is it?
 - Models to predict location, time, path, ...
 - Nest sites, minerals, earthquakes, tornadoes, ...
- Solved
 - Interpolation, e.g. Krigging
 - Heterogeneity, e.g. geo. weighted regression
- Almost solved
 - Auto-correlation, e.g. spatial auto-regression
- Failed
 - Independence assumption
 - Models, e.g. Decision trees, linear regression, ...
 - Measures, e.g. total square error, precision, recall
- Missing
 - Spatio-temporal vector fields (e.g. flows, motion), physics
- Next
 - Distance based errors, Scalable algorithms for parameter estimation

$$y = \rho \mathbf{W} \mathbf{y} + \mathbf{x} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\ln(L) = \ln\left|\mathbf{I} - \rho\mathbf{W}\right| - \frac{n\ln(2\pi)}{2} - \frac{n\ln(\sigma^2)}{2} - SSE$$